CHRONIC RENAL FAILURE DR.M.AMERIAN

- RECALL FUNCTIONS OF THE KIDNEYS?
- RECALL NORMAL CREATININE & BUN; OTHER LAB TESTS?
- REVIEW DIAGNOSTIC TOOLS

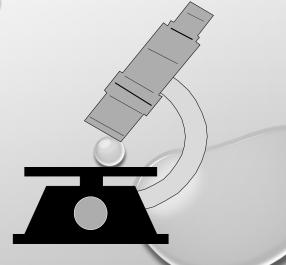
FUNCTIONS OF THE KIDNEYS

- REGULATES VOLUME
 AND COMPOSITION OF
 EXTRACELLULAR FLUID
- EXCRETION OF NITROGENOUS WASTE PRODUCTS
- BP CONTROL VIA RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM-RECALL RAAS

- VITAMIN D ACTIVATION
- ACID-BASE BALANCE

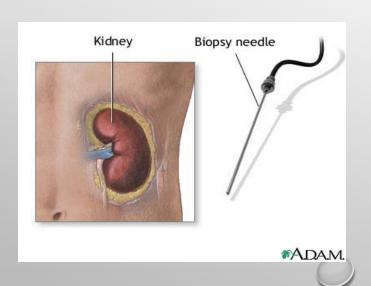
 (HCO3 & H) REGULATION

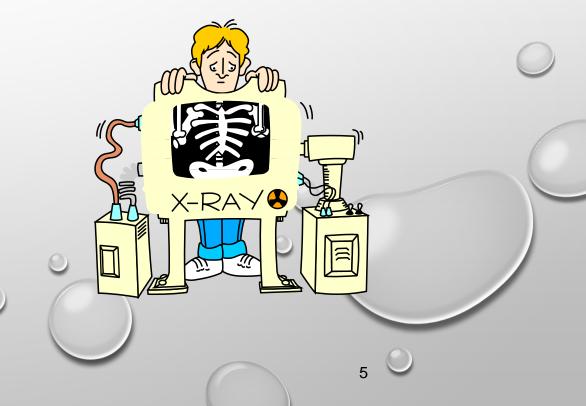
 THROUGH PROCESS OF


 _____, ____ AND _____. filtration, secretion, reabsorpton

 PROSTAGLANDIN SYNTHESIS

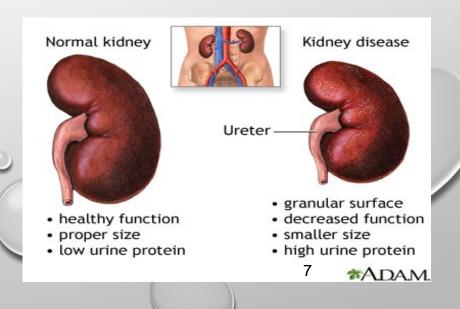
 ERYTHROPOIETIN PRODUCTION


DIAGNOSTIC TOOLS FOR ASSESSING RENAL FAILURE


- BLOOD TESTS
 - BUN ELEVATED (NORM 10-20 MG/DL)
 - CREATININE ELEVATED (NORM 0.6 1.4 MG/DL)
 - K ELEVATED (TEXT NORM 3.5-5.0 MEQ/L)
 - PO₄ ELEVATED (TEXT NORM 2.8-4.5MG/DL)
 - CA DECREASED (TEXT NORM 8.5-10.5MG/DL)
- URINALYSIS
 - SPECIFIC GRAVITY (TEXT NORM 1.003-1.030
 - PROTEIN (TEXT NORM 0-TRACE)
 - CREATININE CLEARANCE (TEXT NORM 85-120ML/MIN)

DIAGNOSTIC TOOLS

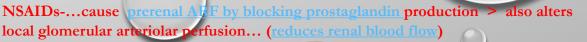
- ULTRASOUND
- X-RAYS
- BIOPSY *MOST DEFINITIVE


CHRONIC RENAL FAILURE/ CHRONIC KIDNEY DISEASE (CKD)

• SLOW PROGRESSIVE RENAL DISORDER RELATED TO NEPHRON LOSS, OCCURRING OVER MONTHS TO YEARS

• CULMINATES IN END STAGE RENAL DISEASE (ESRD)

CHARACTERISTICS OF CKD - ESRD


- CAUSE & ONSET OFTEN UNKNOWN
- LOSS OF FUNCTION PRECEDES LAB ABNORMALITIES
- LAB ABNORMALITIES PRECEDE SYMPTOMS
- SYMPTOMS (USUALLY) EVOLVE IN ORDERLY SEQUENCE
- RENAL SIZE IS USUALLY DECREASED

CAUSES OF CKD

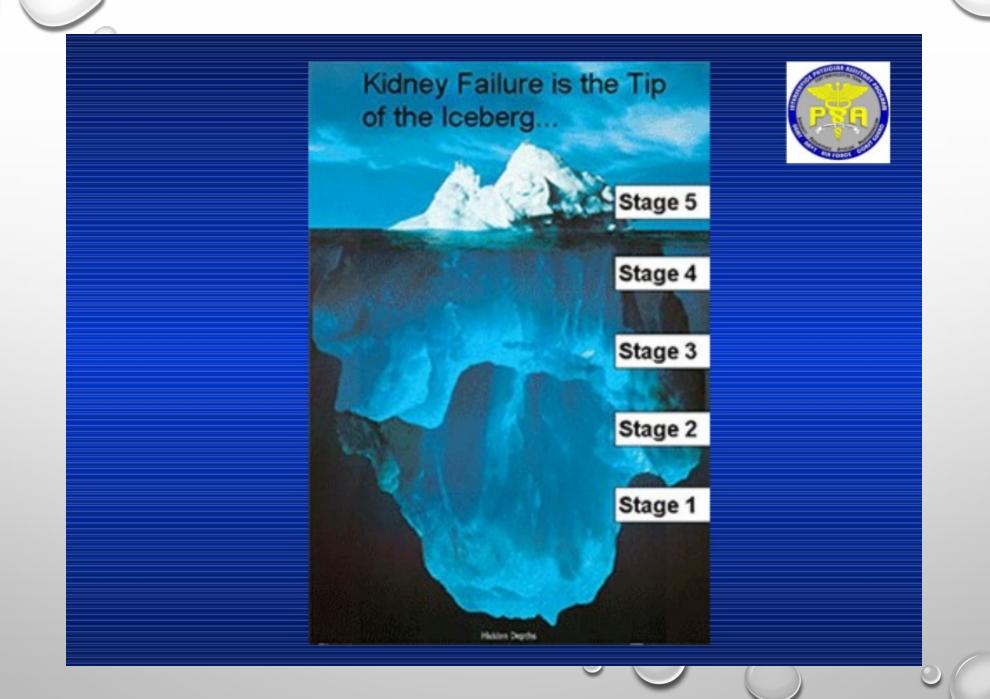
- *DIABETES
- *HYPERTENSION
- GLOMERULONEPHRITIS
- CYSTIC DISORDERS
- DEVELOPMENTAL CONGENITAL
- INFECTIOUS DISEASE

- •Neoplasms
- Obstructive disorders
- Autoimmune diseases (lupus)
- Hepatorenal failure
- Scleroderma
- Amyloidosis
- •Drug toxicity-(overuse some common drugs, as aspirin, NSAID as ibuprofen, cocaine and acetaminophen)

GLOMERULAR FILTRATION RATE (GFR)-DETERMINE STAGE CKD (MOST ACCURATE EVALUATION)

- 24 HOUR URINE FOR CREATININE CLEARANCE
- FORMULA- URINE CREATININE X URINE VOLUME
- SERUM CREATININE
- CAN ESTIMATE CREATININE CLEARANCE BY:

 $140 - {AGE X WEIGHT (KG)}$


72 X SERUM CREATININE

WHAT IS NORMAL GFR?

90 - 120 mL/min

Proteinuria is an important risk factor for the progression of CKD. Increased protein filtration results in excess reabsorption of filtered proteins by proximal tubular cells.

				Persistent albuminuria categories Description and range		
				A1 Normal to midty increased	A2 Moderately increased	A3 Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmo
GFR categories (ml/mirv 1.73 m²) Description and range	G1	Normal or high	290			
	G2	Mildly decreased	60-89			
	G3a	Mildly to moderately decreased	45-59			
	СЗЬ	Moderately to severely decreased	30-44			
	G4	Severely decreased	15-29			
	GS	Kidney failure	<15			

Green: low risk (if no other markers of kidney disease, no CKD): Yellow: moderately increased risk Orange: high risk: Red, very high risk

STAGES OF CKD NKF CLASSIFICATION SYSTEM

STAGE 1: GFR > 90 ML/MIN DESPITE KIDNEY DAMAGE

STAGE 2: MILD REDUCTION (GFR 60 – 89 ML/MIN)

GFR OF 60 MAY REPRESENT 50% LOSS IN FUNCTION.

DURING STAGE 1 - 2

• NO SYMPTOMS

- SERUM CREATININE DOUBLES*
- (UP TO 50% NEPHRON LOSS

STAGES OF CKD NKF CLASSIFICATION SYSTEM

STAGE 3: MODERATE REDUCTION (GFR 30 – 59 ML/MIN)

- 1. CALCIUM ABSORPTION DECREASES (FROM THE GI TRACT)
- 2. MALNUTRITION ONSET
- 3. ANEMIA
- 4. LEFT VENTRICULAR HYPERTROPHY

STAGES OF CKD NKF CLASSIFICATION SYSTEM

STAGE 4: SEVERE REDUCTION (GFR 15 – 29 ML/MIN)

- 1. SERUM TRIGLYCERIDES
- 2. HYPERPHOSPHATEMIA
- 3. METABOLIC ACIDOSIS
- 4. HYPERKALEMIA

STAGES OF CKD-NKF CLASSIFICATION SYSTEM

STAGE 5: KIDNEY FAILURE (GFR < 15 ML/MIN)

ESRD!!!

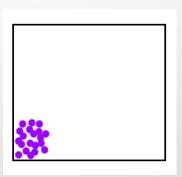
- AZOTEMIA
- RESIDUAL FUNCTION < 15% OF NORMAL
- EXCRETORY, REGULATORY, HORMONAL FUNCTIONS SEVERELY IMPAIRED
- METABOLIC ACIDOSIS (KUSSMAUL BREATHING)
- MARKED : BUN, CREATININE, PHOSPHOROUS
- MARKED : HEMOGLOBIN, HEMATOCRIT, CALCIUM
- FLUID **OVERLOAD**

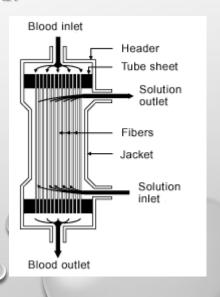
TREATMENT OPTIONS

- CONSERVATIVE THERAPY * (SEVERE RESTRICTIONS, DIETARY, FLUIDS MAINTAIN RENAL FUNCTION AS LONG AS POSSIBLE- IF GFR > 10ML/MIN)
- HEMODIALYSIS
- PERITONEAL DIALYSIS
- TRANSPLANT
- NOTHING > DEATH

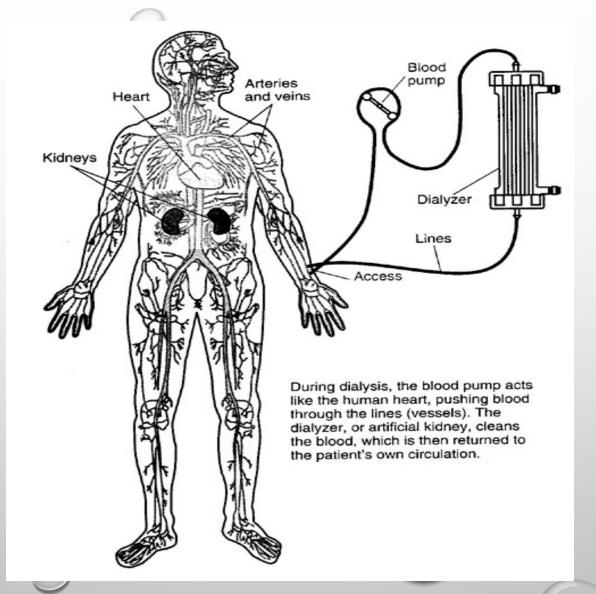
CONSERVATIVE TREATMENT GOALS

- DETECT/TREAT POTENTIALLY REVERSIBLE CAUSES OF RENAL FAILURE
- PRESERVE EXISTING RENAL FUNCTION
- TREAT MANIFESTATIONS
- PREVENT COMPLICATIONS
- PROVIDE FOR COMFORT

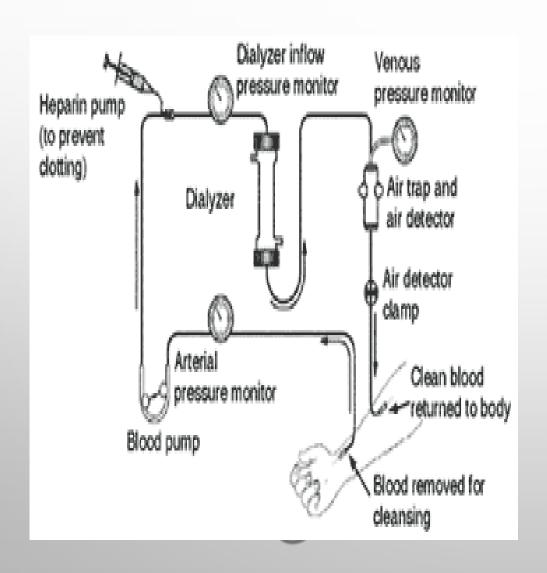

HEMODIALYSIS

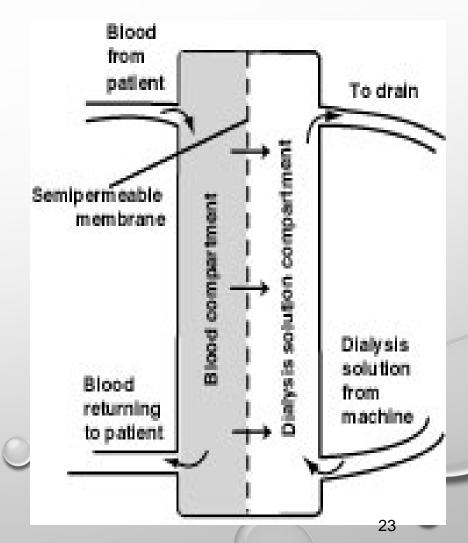

- REMOVAL OF SOLUBLE SUBSTANCES AND WATER FROM THE BLOOD BY *DIFFUSION* THROUGH A SEMI-PERMEABLE MEMBRANE.
- EARLY ANIMAL EXPERIMENTS BEGAN 1913
- 1ST HUMAN DIALYSIS 1940'S BY DUTCH PHYSICIAN WILLEM KOLFF (2 OF 17 PATIENTS SURVIVED)
- CONSIDERED EXPERIMENTAL THROUGH 1950'S, NO INTERMITTENT BLOOD ACCESS; FOR ACUTE RENAL FAILURE ONLY.
- 1960 DR. SCRIBNER DEVELOPED SCRIBNER SHUNT-1960'S MACHINES EXPENSIVE, SCARCE, NO FUNDING.
- "DEATH PANELS" PANELS WITHIN COMMUNITY DECIDED WHO GOT TO DIALYZE.

HEMODIALYSIS PROCESS


- BLOOD REMOVED FROM PATIENT INTO EXTRACORPOREAL CIRCUIT.
- **DIFFUSION** AND ULTRAFILTRATION TAKE PLACE IN DIALYZER.

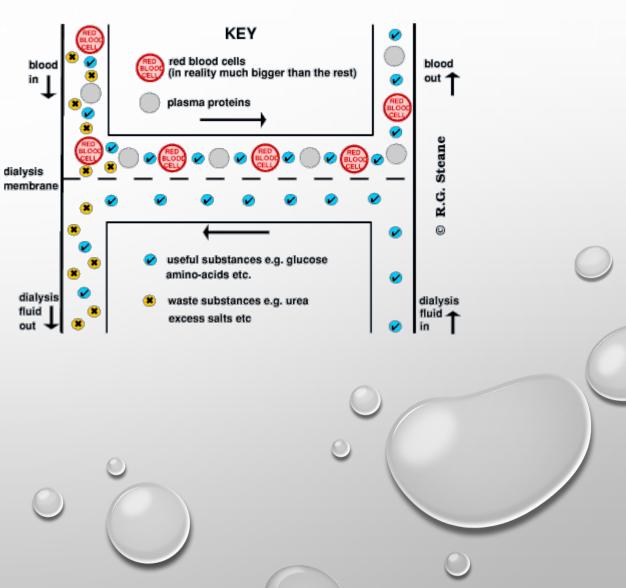
• CLEANED BLOOD RETURNED TO PATIENT.



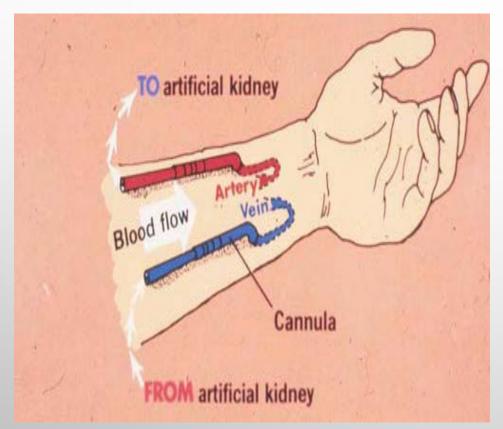


EXTRACORPOREAL CIRCUIT

HOW HEMODIALYSIS WORKS



How Dialysis Works-Interactive!


An <u>Introduction to Dialysis-How</u> Stuff Works! (Step by Step)

YouTube- Hemodialysis! Great!

