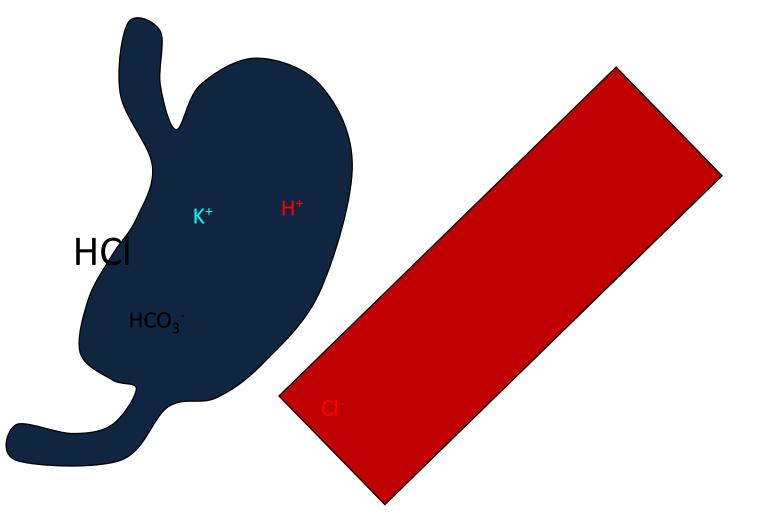

Dr.asadpour.ak Intensivist Shahrood Medical university

- Elevation of **pH** due to an increased 20:1 ratio
 May be caused by:
 - An increase of bicarbonate
 - A decrease in hydrogen ions
 - Imbalance again cannot be due to CO₂
 - Increase in **pH** which has a non-respiratory origin

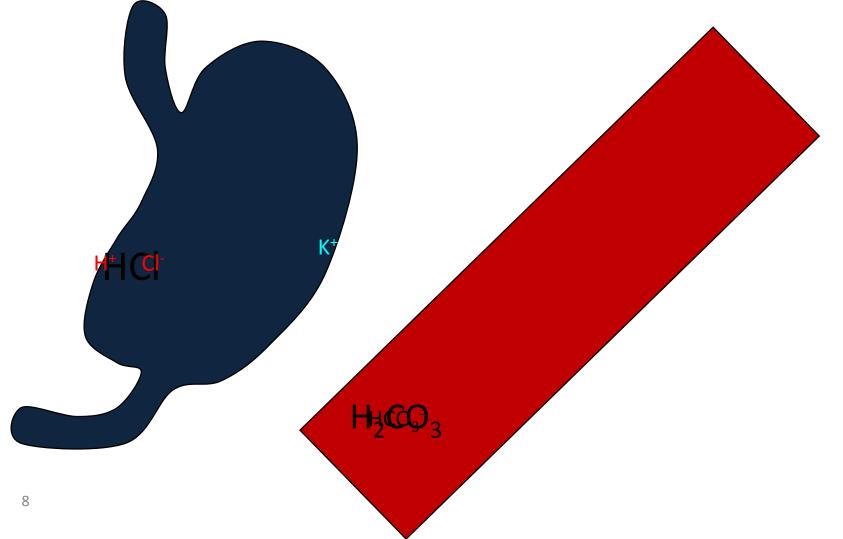
H₂CO₃ : Carbonic Acid HCO₃⁻ : Bicarbonate Ion $(Na^+) HCO_3^-$ (K⁺) HCO₃-(Mg++) HCO₃-(Ca++) HCO₃-

metabolic balance before onset of alkalosis
pH = 7.4

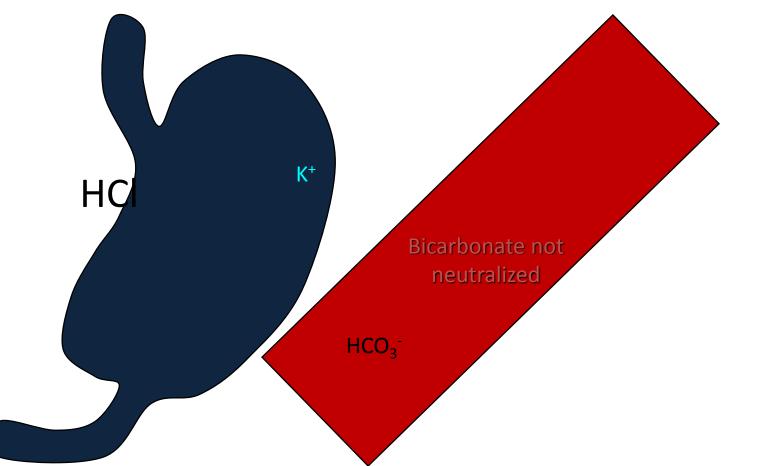
- A reduction in H⁺ in the case of metabolic alkalosis can be caused by a deficiency of noncarbonic acids
- This is associated with an increase in HCO₃⁻
- Can be the result of:

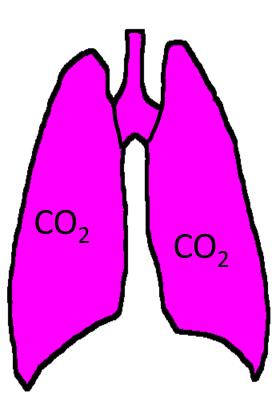

Ingestion of Alkaline Substances
 Vomiting (loss of HCl)

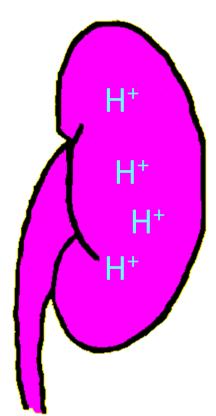
- 1) Ingestion of Alkaline Substances
 - –Influx of NaHCO₃
 - Baking soda (NaHCO₃) often used as a remedy for gastric hyperacidity
 - NaHCO₃ dissociates to Na⁺ and HCO₃⁻
 - Bicarbonate neutralizes high acidity in stomach (heart burn)
 - The extra bicarbonate is absorbed into the plasma increasing pH of plasma as bicarbonate binds with free H⁺

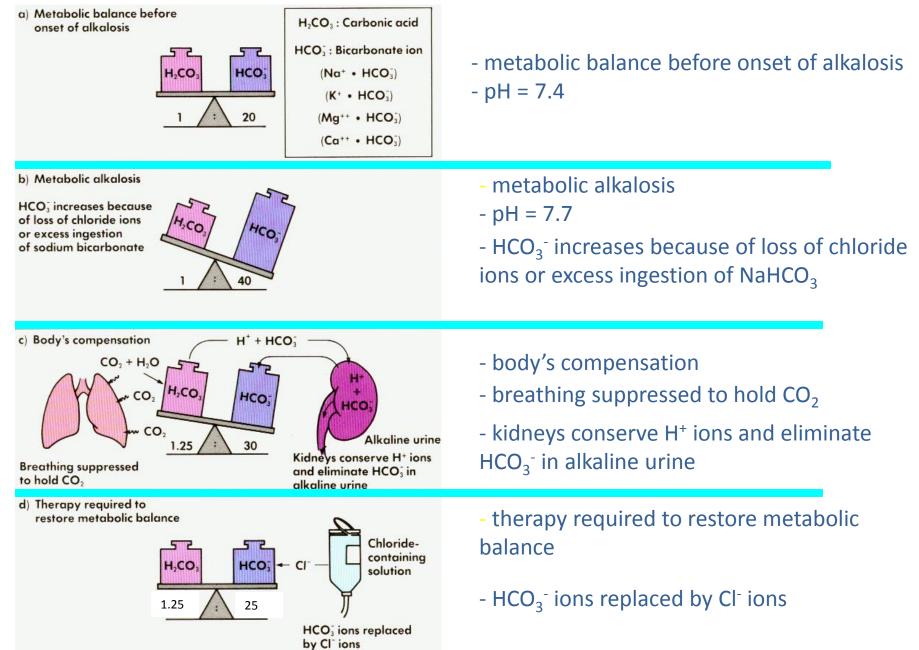

• 2) Vomiting (abnormal loss of HCl)

-Excessive loss of H⁺

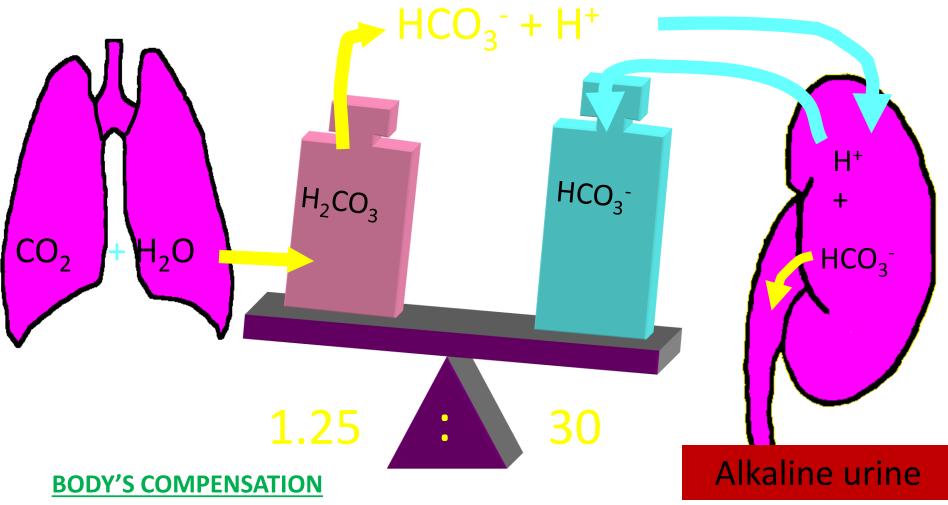

- Gastric juices contain large amounts of HCI
- During **HCI** secretion, bicarbonate is added to the plasma

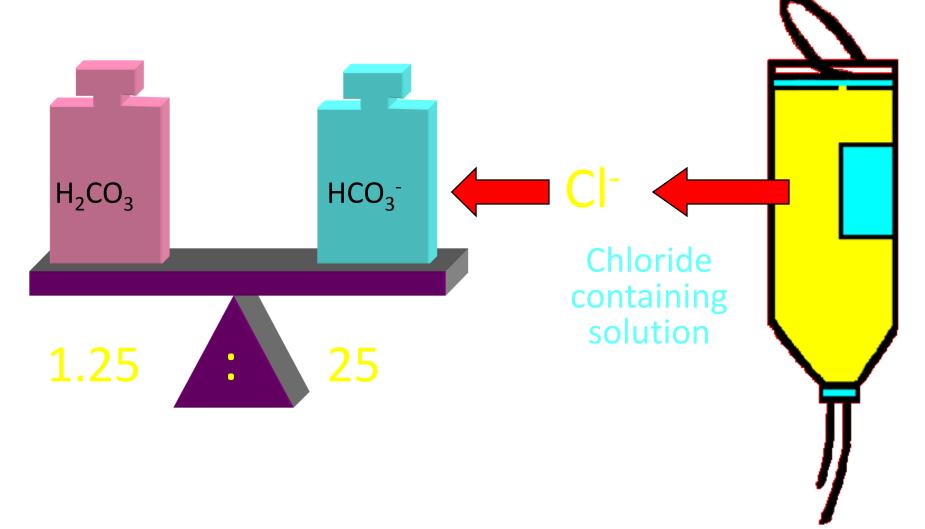

• The bicarbonate is neutralized as **HCI** is reabsorbed by the plasma from the digestive tract




- During vomiting H⁺ is lost as HCl and the bicarbonate is not neutralized in the plasma
 - Loss of HCI increases the plasma bicarbonate and thus results in an increase in pH of the blood

- Reaction of the body to alkalosis is to lower pH by:
 - -*Retain CO*₂ by decreasing breathing rate
 - -Kidneys increase the retention of H⁺





- pH = 7.7
- HCO₃⁻ increases because of loss of chloride ions or excess ingestion of NaHCO₃

- breathing suppressed to hold CO₂
- kidneys conserve H⁺ ions and eliminate HCO₃⁻ in alkaline urine

Therapy required to restore metabolic balance
 HCO₃⁻ ions replaced by Cl⁻ ions

<u>Physiology</u>

- Kidneys are responsible for maintaining a stable bicarbonate concentration
- Too much bicarb and it is rapidly excreted in the urine (eg. when you inject sodium bicarb into a healthy person, the pH only rises <u>very briefly</u>)
- Too little bicarb, and all of it gets reabsorbed from the urine

for alkalosis to persist, there needs to be an additional process which <u>impairs</u> renal bicarb regulation

How a metabolic alkalosis is initiated

Gain of alkali

- From the outside, eg. infusion of sodium bicarbonate
- From the inside, eg. metabolism of ketoanions to produce bicarbonate – like lactate in Hartmanns, acetate in Plasmalyte, citrate in transfused blood

Loss of acid

- Through the kidneys, eg. use of diuretic
- Through the gut , eg. vomiting or NG suction

Causes of metabolic alkalosis

Chloride sensitive

Gastrointestinal

- Vomiting
 - Gastric drainage
- Chloride diarrhea
- Villous adenoma

Renal

- Diuretics
- Posthypercapnic
 - Low chloride intake

Sweat

Cystic fibrosis

Causes of metabolic alkalosis

Chloride resistant

- Increased minrealocorticoid activity
- Primary hyperaldosteronism
- secondary hyperaldosteronism
- **Cushing's syndrome**
- **Licorice ingestion**
- Bartter's syndrome

Miscellaneous

Massive blood transfusion

Acetate-containing colloid solutions

Alkaline administration with renal insufficiency

Causes of metabolic alkalosis

Miscellaneous (cont)

- Alkaline administration with renal insufficiency
 - Alkali therapy
 - Combined antacid & cation exchange resin therapy
- Hypercalcemia
- Milk-alkali syndrome
- Bone metastasis
- Sodium penecillins
- Glucose feeding after starvatiion

How a metabolic alkalosis is maintained

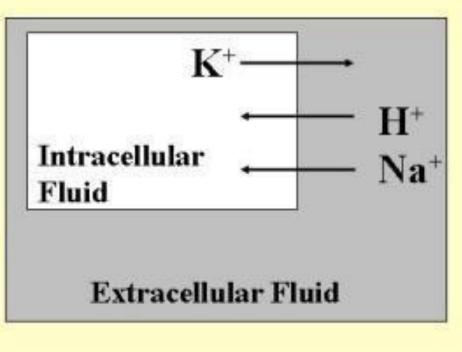
Whatever maintains the alkalosis has to cause a massive decrease in the kidneys ability to handle bicarbonate and hydrogen ions.

These causes can be divided into 4 groups:

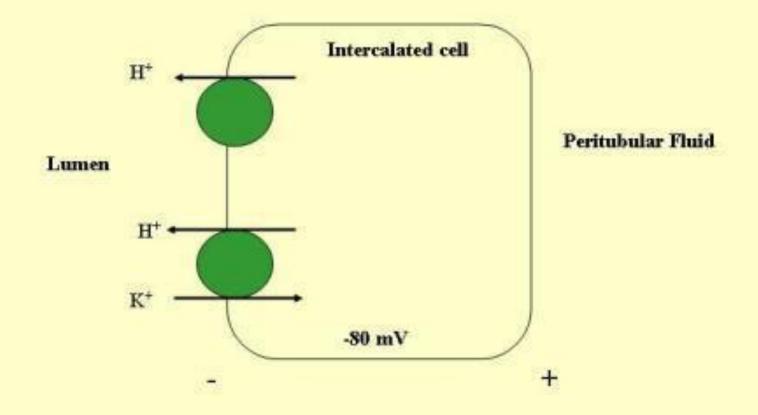
- Chloride depletion
- Potassium depletion
- Reduced glomerular filtration rate
- Extracellular volume depletion

Chloride depletion alkalosis

- The most common form: 90% of clinical cases
- Chloride and bicarb are the only anions present in any significant quantity in the ECF: <u>decrease in one leads to an</u> <u>increase in the other</u>
 - Gastric acid loss eg. due to NG suction or vomiting:
 - Enteric chloride loss eg. due to villous adenoma
 - Diuretic use, eg. frusemide infusion


Administration of chloride is required to correct these disorders

Potassium depletion alkalosis


- Bicarbonate resorption in the proximal and distal tubule is increased in the presence of potassium depletion
- Potassium depletion also decreases aldosterone release by the adrenal cortex
- Examples:
 - Primary or secondary hyperaldosteronism increased aldosterone causes increased K+ and H+ losses
 - Cushings syndrome, or COPD on IV hydrocortisone corticosteroids have some mineralocorticoid effect
 - Potassium-depleting diuretics eg. frusemide
 - Also Bartter syndrome (inherited juxtaglomerular hyperplasia), licorice abuse (pseudohyperaldosteronism)
 - Severe potassium depletion alone

Hypokalemia

- Metabolic alkalosis often causes K⁺ depletion
- It is also exacerbated by K⁺ depletion
- Extracellular K⁺ shift is accompanied by intracellular H⁺ and Na⁺ movement
- > H⁺ movement increases serum HCO₃[•] concentration
- Higher intracellular H⁺ enhances H⁺ secretion
- H⁺-K⁺ exchanger is upregulated by K⁺ depletion

H⁺/K⁺ Exchange Occurs in K+ Depletion

(c) 2006, James A. Strom, M.D.

Another classification of metabolic alkalosis:

- Chloride responsive alkalosis - < 20mEq/L

- Loss of hydrogen ions, eg. vomiting
- Loss of bicarbonate-poor water, (concentration of bicarbonate, "contraction alkalosis")

— Chloride resistant alkalosis - > 20mEq/L

- Retention of bicarbonate
- Shift of hydrogen ions into the intracellular space (eg. in hypokalemia)
- Administration of alkalotic agents, eg. bicarbonate

Mechanisms of Metabolic Alkalosis

A. Chloride responsive	B. Chloride resistant
Extracellular volume and chloride depletion	Direct stimulus to H ⁺ secretion
1. Vomiting	1. Primary aldosteronism
2. NG suction	2. Cushing's syndrome
3. Diuretics	3. Steroid administration
4. Villous adenoma	4. Ectopic ACTH production
(5. Post-hypercapnia)	5. Adrenogenital syndrome
	6. Licorice
	7. Bartter's syndrome
	8. Severe hypokalemia

Common causes of metabolic alkalosis in the <u>INTENSIVE</u> <u>CARE UNIT</u>

- Frusemide infusion, use of thiazides
- High volume NG aspirates
- Diarrhoea
- Severe hypokalemia (eg. insulin infusion)
- Corticosteroid therapy
- Overcorrection of chronic respiratory acidosis
- Recovery phase post organic acidosis
- Large doses of IV penicillin-based drugs

Consequences of metabolic alkalosis

- In critically ill patients, = significant increase in morbidity and mortality
 - Decreased myocardial contractiity
 - Arrhythmias
 - Decreased cerebral blood flow (vasoconstriction)
 - \succ Neuromuscular excitability \rightarrow tetany \rightarrow difficult ventilation
 - Impaired peripheral oxygen unloading
 - Confusion, obtundation, seizures
 - Hypoventilation, thus atelectasis
 - Increased V/Q mismatch (alkalosis inhibits hypoxic pulmonary vasoconstriction)

Clinical features of metabolic alkalosis

- Hypoventilation, even hypoxia
- Other changes are similar to those of

hypercalcemia:

- confusion, obtundation, seizures
- paraesthesia
- Muscle cramps, tetany

Treatment of Metabolic Alkalosis

pH < 7.6, asymptomatic:

→ volume depleted: give IV-NS and K+

edematous but intravascularly depleted (CHF, nephrosis, cirrhosis):

—give albumin to 个 intravascular volume replete K+ aggressively, and consider Diamox

> volume expanded (rare): give KCl po or IV

Treatment of Metabolic Alkalosis

pH > 7.6, symptomatic:

NH4Cl or HCl IV

 20-40 mEq/hr of 0.1 N or 0.15 N HCl through central line (NH4Cl must be avoided in <u>cirrhosis or renal failure</u> 100 mEq H+ should ↓ HCO3- by 7 mEq/L follow hourly pH, pCO2, HCO3stop when pH < 7.6 and patient asymptomatiC

<u> Acetazolamide (Diamox)</u>

- watch for \downarrow K+; must supplement with massive amounts KCl
- 250 mg IV Q8H
- stop when pH < 7.6 and patient asymptomatic

Treatment of Metabolic Alkalosis

Non-chloride-responsive:

Urinary Cl- > 20 mEq/l means not chloride-responsive (rare), so problem is probably primary hyperaldo, or severe lack of K+ leading to HCO3- loss;

- give plenty of K+
- give large doses of Aldactone (spironolactone) maintenance therapy

- Treatment of metabolic alkalosis is most often accomplished by replacing water and electrolytes (sodium and potassium) while treating the underlying cause
- Occasionally when metabolic alkalosis is very severe, dilute acid in the form of ammonium chloride is given by IV

Management of metabolic alkalosis in the Intensive Care Unit

Basic management:

- **GIVE OXYGEN:** the tissues are not getting enough
 - Unless the patient is a CO2 retainer with severe compensatory hypercapnea
- **GIVE CHLORIDE:** in chloride-responsive alkalosis this will reverse the alkalosis

"give chloride" means "give saline"

• **GIVE PROTON PUMP INHIBITOR:** if you reduce the rate of H+ excretion by the gastric mucosa

Management of metabolic alkalosis in the Intensive Care Unit

- REPLACE POTASSIUM / OTHER ELECTROLYTES
- AVOID HYPERVENTILATION
- **STOP** : NGT SUCTIONING, ANTIACID AND DIURETIC THERAPY

Management of metabolic alkalosis in the Intensive Care Unit

Advanced management strategies:

• Hydrochloric acid infusion

- Via a central line; just make sure it doesn't extravasate
- The H+ will consume HCO3 then its all about blowing off enough of the created CO2

Acetazolamide

- Carbonic anhydrase inhibitor: forces kidneys to excrete HCO3 and H+ to enter the bloodstream together with CL-
- Increases losses of Na+, K+, and water.