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Introduction

Well-designed observational cohort studies are frequently

used for estimating the causal effects of exposures when

randomized trials are not feasible or ethical. However,

these studies are subject to several biases in the taxonomy

of confounding, selection bias and measurement bias.1 In

particular, incorrect handling of follow-up times in terms

of exposure status in the analysis of such studies may intro-

duce immortal time bias (ITB) in favour of the exposed

group.2,3 Immortal time refers to a period of time in which,

by design, participants in the exposed group cannot experi-

ence the outcome. This often happens in pharmacoepide-

miologic studies in which treatment is prescribed at

variable times (with delay) after disease diagnosis. The bias

occurs when the exposed group is considered to be exposed

during their entire follow-up time (even during periods in

which they are theoretically unexposed) or their unexposed

follow-up times are discarded.2,3

In recent years, ITB has been identified in a large body

of literature in different areas of medicine including can-

cer,4 diabetes,3 heart disease5 and COPD2 among others.

Biased results from these studies can lead to inappropriate

prescribing of drug therapies or even harmful outcomes in

patients. Despite the publication of many examples and

tutorials on this topic, ITB still seems to be prevalent in

many cohort studies.6,7 Perhaps one potential reason might

be that the structure of ITB is still poorly understood.

Better understanding of ITB requires appreciation for

its structure. Causal diagrams have been extensively used

to represent several biases in epidemiology.8–13 A detailed

description of causal diagrams is beyond the scope of this

paper. In brief, directed acyclic graphs (DAGs) include

nodes (measured and unmeasured variables) linked by di-

rected edges (arrows). A causal DAG (cDAG) is one in

which the absence of an arrow between two variables

implies the absence of a direct causal effect and in which it

is assumed that all shared causes of any pair of variables

(i.e. confounders) are included in the graph. Two variables

A and B are connected with an arrow that starts from A

and ends on B, meaning that A causes B. Variable A cannot

cause itself as cDAGs are acyclic. Adjacent arrows, irre-

spective of their direction, form paths in a cDAG.

Conditioning on a variable means restricting that variable

to a subset of its values and can be undertaken at the data-

analysis stage (e.g. regression adjustment) or study-design

stage (e.g. restriction ).

Causal diagrams provide a mathematically rigorous yet

intuitive tool for identifying structural biases. To our

knowledge, a detailed discussion of the ITB structure using

causal diagrams has not been presented to date. In this pa-

per, we use causal diagrams to represent the structure of

ITB. We graphically explore the structure of ITB using

causal diagrams and demonstrate how ITB can lead to se-

lection bias and measurement bias, considered as two of
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the three (along with confounding bias) fundamental types

of bias in epidemiology. We will also discuss mitigation

strategies that researchers can use to prevent ITB in their

studies.

An illustrative example

We will use the first description of ITB using a land mark

study undertaken in the late 1960s in the context of two co-

hort studies that assessed the effect of heart transplantation

on mortality (compared with medical therapy).14 For exam-

ple, imagine a group of patients with end-stage heart failure

who are actively receiving medical therapy while also regis-

tered on the waiting list of receiving a heart transplant. For

simplicity, we assume a large sequentially randomized ex-

periment without censoring, random confounding and non-

compliance with treatment,11,15 i.e. the participants ran-

domly received heart transplant at monthly visits, and all

were followed until death or a priori end date, whichever

came first (Figure 1). The waiting time for patients who sur-

vived to receive the transplant is immortal, i.e. patients

could not die during the time they waited for a transplant,

leading to ITB if this immortal time is not appropriately

accounted for in the analysis.

ITB I: misclassification

One can incorrectly assign the waiting time of subjects

who receive heart transplant to the exposed group in the

analysis even though they had received medical therapy

during that period. ITB can occur if the immortal time

(unexposed time) of those who receive a heart transplant is

incorrectly considered as exposed person-time. For exam-

ple, if a subject is on medical therapy since cohort entry

(month 0) and receives a heart transplant on day 90 (third

month), this subject’s time for the first 3 months (days 0–

90) is incorrectly counted as exposed.

The causal diagram in Figure 2A, representing the sub-

jects’ person-time data so that each exposed subject effec-

tively contributes as two persons: (i) unexposed before

receiving a heart transplant and (ii) exposed after receiving

a transplant, demonstrates that the ITB arising from this

error is an example of misclassification or measurement

bias.10 The variables A and Y denote a subject’s exposure

status (1: heart transplantation plus medical therapy, 0:

medical therapy alone) and outcome (1: died, 0: survived),

respectively. The variable U represents an unmeasured pro-

tective cause of the outcome, e.g. a cardioprotective haplo-

type (1: yes, 0: no). Variable A* is a misclassified version

of A, i.e. A*¼ 1 during the immortal time period (A¼ 0);

otherwise A*¼A. The arrows from A and U to A* reflect

that unexposed subjects with the haplotype (A¼ 0 and

U¼ 1) are more likely to be misclassified (from A¼ 0 to

A*¼ 1) than those without the haplotype (A¼ 0 and

U¼ 0) because the former has a higher probability of sur-

viving the waiting time and hence receiving a heart trans-

plant than the latter.

In Figure 2A, the absence of an arrow from A to Y rep-

resents the causal null hypothesis of no effect of heart

transplantation on death. However, the misclassified expo-

sure (A*) is associated with Y through U as the path

A* UfiY is open. The variables A and U are independent

since the (true) exposure was randomly assigned to the

patients, and in fact A* is a collider on the path

AfiA* U. However, the misclassified exposure (A*) is

positively associated with U because, as previously men-

tioned, the subjects with the haplotype (U¼ 1) are more

likely to receive a heart transplant (A*¼ 1) than those

without the haplotype (U¼ 0). The ITB presented in Figure

2A will be in favour of heart transplantation because the

sign of the association between A* and U is positive, and

also U and Y are negatively associated.

month 1 month 2 month 3

T

N

N

N

T

T

Figure 1 A sequentially randomized experiment in which patients with

end-stage heart failure who are on medical therapy randomly receive

heart transplant at monthly visits. T denotes heart transplant and N rep-

resents no heart transplant. For simplicity, the diagram represents only

the first three visits.

U A          A*       Y U A           E=0        Y

U           A            Y U Am C=0       Y

(a) (b)

(c) (d)

Figure 2 Causal diagrams representing different approaches for han-

dling immortal times: (A) misclassification or measurement bias due to

the assignment of the immortal times to the exposed, (B) selection bias

due to the exclusion of the immortal times, (C) no immortal time bias in

the time-dependent analysis and (D) no immortal time bias in the se-

quential approach.
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ITB II: selection bias

The second ITB type is through inappropriate exclusion of

immortal times of the exposed participants (those who re-

ceived heart transplant) from the analysis, which can lead

to selection bias.12,16 The causal diagram in Figure 2B rep-

resents the structure of this selection bias. Variable E indi-

cates the exclusion of immortal times: E¼ 1 for the

excluded (immortal) person-times and E¼ 0 otherwise.

The square around E¼ 0 indicates that the analysis is lim-

ited and subsequently conditioned to person-times that

were not excluded. The rationale behind arrows from A

and U to E is that the unexposed group with haplotype

(A¼ 0 and U¼ 1) is more likely to be excluded from the

analysis (E¼ 1) than those without haplotype (A¼ 0 and

U¼ 0), because the former have a higher probability of re-

ceiving a heart transplant than the latter, as they are more

likely to survive the waiting time.

The causal diagram in Figure 2B displays the null hy-

pothesis of no effect of heart transplantation on death as

there is no arrow from A to Y. However, A and Y become

associated as, by exclusion of the immortal times, the col-

lider E on the path AfiE UfiY has been conditioned on,

creating an open path between A and Y. As a result of this

conditioning, the variables A and U become positively as-

sociated as the unexposed subjects without haplotype

(A¼0 and U¼ 0) are more likely to be included in the

analysis than those with haplotype (A¼0 and U¼ 1).

Again, the ITB presented in Figure 2B is in favour of the

heart-transplantation group because the sign of the associ-

ation between A and U is positive, and also U and Y are

negatively associated.

In an attempt to correct the ITB mentioned above, one

can emulate immortal times for the unexposed subjects

from the distribution of the immortal times of the exposed

group. Using this approach, similar exclusions are applied

to the unexposed subjects by randomly sampling (with re-

placement) from the list of immortal times for each unex-

posed subject and then subtracting this immortal time

from his/her follow-up time; the subject will be excluded if

the result of the subtraction is negative (Figure 3).17,18 This

approach, which effectively recalibrates the follow-up

times for the unexposed subjects, can partly remedy the se-

lection-bias problem in the exclusion scenario by discard-

ing the unexposed subjects who are more likely ‘frail’ and

deemed to die before the assigned immortal time (those

designated as A¼ 0 and U¼ 0) from the analysis (Figure

3B). However, the danger with this method can be ob-

served for unexposed subjects whose follow-up times are

longer than the matched immortal time (Figure 3C). In

fact, the bias can be further amplified due to elimination of

the immortal time twice: once from the exposed subjects

and once from the unexposed subjects (Figure 3A and C).

Specifically, it involves the probable exclusion of the

healthy unexposed follow-up times (A¼ 0 and U¼ 1) from

unexposed subjects. Thus, consistent with the previous the-

oretical derivation and simulation studies,18 the net result

of matched exclusions is selection bias and the introduc-

tion of a positive association between A and U, which in

turn induces a biased negative association between A and

Y. This approach has been called the ‘prescription time-

distribution matching method’,17,18 although, unlike its

name, it does not really involve matched sampling.

Mitigation strategies for avoiding ITB

Time-dependent analysis

The optimal approach for avoiding ITB is correctly allocat-

ing each subject’s follow-up time contribution during ex-

posed and unexposed periods, i.e. the follow-up time of a

subject should be analysed as unexposed before he/she

receives a heart transplant, and exposed thereafter.2,3,17,18

Figure 2C represents the causal diagram for this time-

dependent analysis and suggests that under the causal null

hypothesis of no effect of heart transplantation on death, A

and Y are independent of each other as there is no path be-

tween them. Thus, there is no bias with a time-dependent

analysis. An example of a time-dependent analysis is using

a time-dependent Cox regression model. However, other

methods such as time-dependent parametric survival mod-

els can also be used.19

Sequential approach

Another potential remedy to control for ITB is the use of a

sequential approach that mimics mini-randomized trials at

monthly intervals.20 Using this approach, in each month,

only patients who have not yet received a heart transplant

are included. Moreover, those who receive a heart trans-

plant in the subsequent months are artificially censored at

the time of receiving a heart transplant. Thus patients are

either exposed or unexposed in each mini-randomized

trial, circumventing the immortal time.18 The analysis

results of mini-randomized trials can be pooled to estimate

the causal effect of the exposure, e.g. using a monthly strat-

ified Cox model, assuming that baseline hazard functions

vary over mini-randomized trials. Within-subject correla-

tion, introduced as the same subject may be included in

several mini-randomized trials, should be taken into ac-

count using e.g. cluster-robust standard errors.21,22 The
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main idea of the sequential approach stems from the emu-

lation of randomized trials from observational studies in

which an observational cohort is considered as a sequence

of non-randomized nested trials and subjects are censored

when they have discontinued their baseline treatment and

then weighted using inverse probability-of-censoring

weighing (IPCW).23,24

The causal diagram in Figure 2D shows the mini-

randomized trial in the sequential approach at month ‘m’.

The variable Am denotes heart transplant at month ‘m’ in

those who have not yet received a transplant. Variable C

represents the artificial censoring of patients receiving a

transplant at a later month, hence the arrow from Am to C.

The square around C¼ 0 suggests that the analysis is lim-

ited to those who are not censored. Figure 2D suggests that

Am and Y are independent under the causal null hypothesis

of no effect of heart transplantation on death and so there

is no bias.

Discussion

We have used causal diagrams to demonstrate the structure

of immortal time bias and have provided diagrammatic

explanations of the two biases inherent in ITB. Allocation

of the immortal times to exposed subjects introduces mis-

classification or measurement bias in favour of the exposed

subjects. This bias is proportional to the ratios of immortal

person-time (sum of waiting times) to exposed and

unexposed person-times. Similarly, exclusion of the im-

mortal times from the analysis results in selection bias in

favour of the exposed, which is proportional to the ratio of

immortal person-time to unexposed person-time.2,18 Of

note, the selection bias remains in effect even if one resorts

to matched exclusions in the unexposed group. Thus the

ITB would be away from the null if exposure is protective

or without any effect, and towards the null if it is a risk

factor.

The magnitude of the misclassification bias is generally

higher than the selection bias as the error involves two

folds. The first is removal of the (unexposed) immortal

times from the unexposed person-times and the second is

adding them to the exposed person-times. However, in the

case of the exclusion of immortal times, the error is only

one-fold, mainly only the exclusion of immortal times

from the unexposed person-times. Both biases can be re-

markable if the prevalence of exposure is high or the out-

come incidence is low.18

Suissa has described how different variations of cohort

studies including time-based cohorts, event-based cohorts,

exposure-based cohorts, multiple-event-based cohorts and

event-exposure-based cohorts can lead to ITB.2 We note

that these designs are simply variations of cohort-study

scenarios in which immortal time is observed. The ITB in

these situations still falls under the categories of either (i)

immortal time is misclassified to the exposed (misclassifi-

cation) or (ii) excluded from the analysis (selection bias).

Immortal �me

Unexposed

Heart Transplant     
(Exposed)(a)

(b)

(c)

Immortal �me is longer than subject’s follow-up 
�me. This subject is excluded from the analysis.

Before Matching A�er  Matching

Unexposed

Figure 3 Immortal time matched exclusion method to control for immortal time bias assuming that subject A (exposed) is matched to subject B or C

(unexposed). Subject B’s follow-up time is less than subject A’s immortal time, so subject B is excluded from the analysis. Subject C’s updated fol-

low-up time (after matching) equals his/her follow-up time (before matching) minus subject A’s immortal time. Although this approach reduces selec-

tion bias in the exclusion scenario by eliminating some of the frail unexposed like subject B, it reintroduces bias due to omitting the early unexposed

times from the rigorous unexposed like subject C. Thus the net effect of immortal time matching can be selection bias.
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The optimal solution to the ITB is a time-dependent

analysis, i.e. the immortal times should be considered as

unexposed so that the exposed subjects contribute to both

exposed and unexposed person-times.2,3,17,18 Another rem-

edy is the sequential approach in which the study is consid-

ered as a series of nested mini-trials with artificial censoring

at the time of receiving exposure.18 In practice, the observa-

tional studies are subject to confounding as well as selection

bias due to censoring, which should be appropriately ad-

justed for in the analysis. In particular, confounders would

be the predictors of artificial censoring in the sequential ap-

proach and the resulting selection bias should be adjusted

for using IPCW in the analysis.25,26 Finally, it is important

to note that heart transplant and unmeasured haplotype in

our example are independent by design, i.e. a sequentially

randomized experiment, but as survival is affected by both

of them, there will be a built-in selection bias in the hazard

ratio generated from survival analysis. Therefore, it is pre-

ferred to perform risk (survival curve) comparisons based

on time-dependent Cox regression or the stratified Cox

model when undertaking the sequential approach.1

ITB is a complex bias that can present itself as either ex-

posure misclassification or selection bias. We have demon-

strated the mechanics of this bias using casual diagrams in

the hope that researchers can have a better appreciation

for this bias and use appropriate mitigation strategies to

control for this bias in their studies.
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