Target of blood pressure in CKD

Dr Hoofar Rafiee Nephrologist

Introduction

- Around 850 million people worldwide have CKD and >80% of them have hypertension
- High blood pressure is an important risk factor for CKD and its progression and CVD
- Mortality from CKD is projected to become the fifth leading cause of death by 2040.
- Among many question concerning the optimal management of high BP in CKD, setting targets for BP control is crucial

Causes of hypertension in CKD

Renin – angiotensin- aldosterone system

- Sympathetic nervous system
- Endothelial dysfunction
- Insulin resistance
- Hyperparathyroidism
- Reduce nephron mass

The main point of discussion

History of the recommendation of BP targets

- Major guidelines on BP targets for CKD
- Challenges
- Treatment and key points

Establishment of target of BP 140/90

VA Cooperative Study in: 143 male DBP 115-129

2nd VA Cooperative Study; 360 patients: DBP 90 -114

Clinical trail 1970s and 1980 established BP <140/90 target of BP</p>

Intensive BP LOWERING in DM and CKD

- Hypertension optimal treatment(HOT)
 - 18790 patients, age 50-80, DBP 100-115
 - Target ≤90, ≤85, ≤80
 - No difference in CV events
 - ▶ In 1501 DM major CV events in DBP ≤ 80 was lower than ≤ 90
- MDRD :840 CKD non DM
 - MEAN BP 92 vs 107
 - Proteinuria>1g/d intensive BP control slow decline in GFR

*2003 JNC 7 recommended a treatment target BP of 140/90 and BP goal <130/80 for DM and CKD

Revision of target BP to 140/90 for all hypertension regardless of associated conditions

- Accord Study in 2010 :benefits of BP control in DM
 - 4733 patients(BP <120 vs <140) follow up 4.7 yr</p>
 - Not reduce fetal and non fetal CV reducing rate of stroke
 - For CKD the evidence for benefits was unclear
- REINS2 Study
- AASKD
 - Intensive BP control failed to show benefits in slowing progression of KD
- Based these ,ESH/ESC(2013) & 2014 JNC 8 recommended target <140/90</p>
- DBP 85 for DM (European guide)

Back to 130/80: intensive BP treatment for all hypertensive

SPRINT:2015

- 9361 patients without DM,age > 50 relatively high risk . AOBP was used
- BP <120 vs <140
- Trial was stopped in 3.26 yr due to significant CV risk reduction
- Subsequent meta-analysis of BP lowering trials demonstrated benefits especially at high CV risk
- ACC/AHA
- ESH/ESC

*Intensive BP lowering may be beneficial but too much reduction 120/70 ?

Current recommendation

ESC guideline:

KDIGO :

From KDIGO 2012 to KDIGO 2021

KD1GO 2012

- BP < 140/90 in CKD non diabetic, normoalbuminuric</p>
- BP < 130/80 in CKD with albuminuria and transplant patients</p>
- No recommendation for dialysis patients

KD1GO 2021

- BP < 120/80 in CKD when tolerated</p>
- Provide guide how to measured office BP

From ESC/ESH 2018 to 2021

2018 ESC/ESH

- Therapy for patients with CKD> 80 yr started in BP \geq 160/90
- Threshold in younger was $\geq 140/90$
- Target was the same for adult CKD of all ages 130-139 / 70-79
- Younger with no CKD and diabetes 120-129
- ESC 2021
 - Decrease differential SBP thresholds at which to initiate therapy based on age
 - Still recommends a higher SBP target 130-130 in adults with CKD at any age
 - Younger people in the general population or I DM 120-130 if <70 and 130-139 if ≥ 70

Key question regarding the discrepancy in SBP targets between KDIGO and ESC 2021

- Do the new guidelines cite different evidence of their BP targets in CKD
- Do they recommend different methods to measure office BP
- Does the guideline ESC 2021 acknowledge the earlier guidelines in the same year (KDIGO)
- Does the ESC explain why its BP targets differ from KDIGO

- The KDIGO target systolic BP <120 mmHg target is based on CKD subgroup analysis of a single randomized controlled trial (SPRINT).
 - The target is not generalisable as SPRINT excluded people with diabetes (also not supported by ACCORD trial), ADPKD, GN on immunosuppression, proteinuria >1 g/day and CKD stages 4 (very few patients included) & 5.
 - The target refers to standardized BP and not to routine office BP.
 - Standardized BP measurement is important for initiating and monitoring treatment of hypertension, but is challenging to implement outside specialist hypertension and research clinics.
 - The target will increase the risk of adverse events in the multi-morbid, frail and elderly CKD population, especially if applied to routine BP measurement.
 - The target will be difficult to achieve in the majority of CKD patients based on current evidence.
- The target systolic BP <120 mmHg recommended by KDIGO is an outlier among the contemporary international hypertension guidelines and will perplex clinicians.

International guideline target BP

JNC 7 :

- General BP goal is < 140/90</p>
- Goal of < 130/80 for DM or CKD</p>
- JNC 8:
 - Less than 140/90 in 18-59 yr without comorbidities
 - In patients 60 or older with DM or CKD or both goal is < 140/90</p>
 - 60 or older without DM or CKD < 150/90</p>
- ACC/AHA 2017: target of < 130/90</p>
- ESC/ESH: recommends SBP 130-139
 - National institutes for health and care: < 140/90 in CKD and ACR<70</p>
 - And SBP 120-129 for CKD and ACR >70 mg/mol
- KDIGO (2021): recommends SBP<120</p>

Table 2.Criteria for Hypertension Based on Office-, Ambulatory (ABPM)-, andHome Blood Pressure (HBPM) Measurement

	SBP/DBP, mm Hg			
Office BP	\geq 140 and/or \geq 90			
ABPM				
24-h average	\geq 130 and/or \geq 80			
Day time (or awake) average	\geq 135 and/or \geq 85			
Night time (or asleep) average	\geq 120 and/or \geq 70			
HBPM	\geq 135 and/or \geq 85			

	Routine/conventional office blood pressure (manual measurement with stethoscope or oscillometric device)*	Unattended AOBPM, daytime ABPM, or home blood pressure [¶]							
Higher-risk population $^{\Delta}$									
 Known ASCVD [◊] Heart failure Diabetes mellitus Chronic kidney disease Age ≥ 65 years [§] Calculated 10-year risk of ASCVD event ≥ 10% [¥] 	125 to 130/<80	120 to 125/ < 80							
Lower-risk [‡]									
None of the above risk factors	130 to 139/<90	125 to 135/<90							

Target BP in CKD

- Intensive BP control compered with conventional During trial
- Intensive BP control mean ≤ 92 (e.g BP ≤ 120/85) compered with usual control a mean BP ≤ 107 (e.g. BP ≤140/90) in extended follow up

SPRINT

- Non DM patients at a high risk of CVE BP < 120 compared with < 140</p>
- results: lower rates of CV events and all causes of mortality
- Of the 9361 cases 2646 had an eGFR <60 and 1723 had a urine ACR of ≥ 30 risk reduction was similar</p>

More intensive VS less intensive

- Reduce risk of ESRD in patients with CKD and proteinuria
- May reduce mortality in patients with CKD
- Mortality benefit is most evident when patients are followed long term

* The evidence four main studies that BP target in CKD patients (ACCORD, SPS3, SPRINT, STEP)

						SBP/DBP, mm Hg			Results	
	Trial, year	Design	Size	Sample	Mean age, years	Baseline	SBP targets	Achieved	Primary outcome	Primary outcome results
	ACCORD, 2010 ¹⁷	2-by-2 factorial RCT (BP and glycemic interventions)	4,733	Adult diabetics at high risk for CVD	62	139/76	<120 and <140	119/64 and 133/70	CVD composite	No significant treatment difference, using prespecified (factorial) analysis. Nominal SPRINT-like benefit for intensive BP lowering in normoglysemic subgroup.
	SPS3, 2013 ¹⁸	2-by-2 factorial RCT (BP and antiplatelet interventions)	3,020	Adults with recent lacunar stroke	63	143/79	<130 and 130– 149	127/— and 138/—	Recurrent stroke	Nonsignificant (<i>P</i> = 0.08) lower event rate in intensively treated group.
/	SPRINT, 2015 ¹⁹ and 2021 ²⁰	2-Arm parallel RCT	9,361	Adults with high BP and high risk of CVD. No diabetics or stroke survivors. Strong representation of older adults and patients with CKD	68	140/78	<120 and <140	119/— and 136/— (median after 6 months)	CVD composite	Significant 27% benefit for intensive treatment group.
	STEP, 2021 ²¹	2-Arm parallel RCT	9,624	Adults 60–80 years, with high BP. High CVD risk cohort	66	146/82	110–129 and 130–149		CVD composite	Significant 26% benefit for intensively treated group.

Abbreviations: BP, blood pressure; CKD, chronic kidney disease; CVD, cardiovascular disease; DBP, diastolic blood pressure; RCT, randomized controlled trial; SBP, systolic blood pressure. (i) Accord Study Group.¹⁷ (ii) SPRINT Research Group.²⁰

Safety of the low BP target

- Postural hypertension
- Recurrent falls and fracturs
- Stroke in those with lower carotid reserve
- Rapid decline in eGFR in RVD
- Potential hazards of too low DBP
- Polypharmacy

Polypharmacy

- Use of \geq 5 pharmacological agents
- Common in elderly and multimorbid individual
- It is associated with adverse drug reaction ,drug interaction and nonadherence
- Higher direct and indirect health care cost

Challenges of implementation of standardized BP measurements

- Requires significant resources staff training clinic space validated BP devices
- Most of the early stage of CKD are cared for in primary cared
- In developing country implementation standardized BP measurement is more challenging
- Possibility of reconfiguration of outpatients service into virtual clinics.

Hypertension management in CKD

Renin-Angiotensin-Aldosterone system inhibitors: Finerenone

New classes

Sacubitril-valsartan

SGLT2 inhibitors

Key points

- Lowering BP to <120/80 increase the risk of other serious adverse events</p>
- Standardized BP measurement increase the burden on patients and resources
- Evaluation home or ambulatory BP measurement as a treatment target are needed
- *Targeting office BP <130/80 using an appropriate office BP measurement can be an option and is recommended for most adults al high risk of CVD
- The pressure and degree of albuminuria would be considered to determine individual BP targets